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Abstract. Based upon the tight-binding formalism a model of a high-Tc superconductor with isotropic and
anisotropic attractive interactions is considered analytically. Symmetry facets of the group C4v are included
within a method of successive transformations of the reciprocal space. Complete sets of basis functions
of C4v irreducible representations are given. Plausible spin-singlet and spin-triplet superconducting states
are classified with regard to the chosen basis functions. It is displayed that pairing interaction coefficients
and the dispersion relation, which can be characterized by the parameter η = 2t1/t0, have a diverse and
mutually competing influence on the value of the transition temperature. It is also shown that in the
case of a nearly half-filled conduction band and an anisotropic pairing interaction the spin-singlet d -wave
symmetry superconducting state is realized for small values of the parameter η, whereas in the opposite
limit, for sufficiently large values, the spin-triplet p-wave symmetry superconducting state has to be formed.
This result cannot be obtained within the Van Hove scenario or BCS-type approaches, where the p-wave
symmetry superconducting state absolutely dominates. The specific heat jump and the isotope shift as
functions of the parameter η are assessed and discussed for the d -wave symmetry singlet and the p-wave
symmetry triplet states.

PACS. 74.20.Rp Pairing symmetries (other than s-wave) – 74.62.Yb Other effects

1 Introduction

In the present views on high-Tc superconductors it is ac-
cepted that due to the layered structure of copper ox-
ides, carriers within the CuO2 planes should be consid-
ered as a quasi-2D system of fermions. Although in some
approaches, where model parameters allow one to gradu-
ally include the third dimension corrections, it is inferred
that in a nearly antiferromagnetic or nearly ferromagnetic
metal the electronic structure is quasi-2D and strongly
anisotropic, but magnetic interactions are not exactly two-
dimensional [1].

Consequently, the main applied approaches base on
the 2D tight-binding band model or the 2D t–J model
and the quantum Monte Carlo method. Then the one-
particle (hole or electron) band-structures as well as the
transformed dispersion relation of one hole in an AF
background are characterized by 2D Fermi surface nest-
ing [1–3].

On the other hand in some more composed approaches
superconductivity is considered as a mixture of coexisting
local pairs and itinerant fermions coupled via a charge
exchange mechanism [4,5], or additional terms of energy
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are included, such as the formation energy of the Zhang-
Rice singlet [6] or the Peierls phase factor, responsible
for the diamagnetic response of the system [7]. Such ap-
proaches, which find their origin in a proposed model of
the anisotropic Fermi liquid [8], allow one to display vari-
ous types of superconducting behavior.

Moreover, experimental data and studies of the
electron-phonon interaction in strongly correlated super-
conducting cuprates within the t–J model supply a direct
evidence of a phonon contribution to the pairing interac-
tion [6,9], similarly to the mixed phononic and electronic
model, where the phononic pairing occurs between holes
strongly dressed by AF fluctuations [2]. However, we have
to emphasize that there are also some other approaches
where the pairing mechanism can be of magnetic origin,
as in the magnetic interaction model which is mathemati-
cally analogous to the conventional electron-phonon prob-
lem with the generalized magnetic susceptibility playing
the role of the phonon propagator [1].

Therefore, in the model presented below, boson-
mediated attractions providing pairing interaction
channels are included. In order to estimate the transition
temperature enhancement, the Van Hove scenario (VHS)
employing a singular form of the density of states is
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applied [10–19]. However, the idea of VHS — where
high-Tc superconductivity is achieved with the aid of
a sharp peak in the density of states (DOS) in the
vicinity of the Fermi level — cannot be accepted if the
pairing interaction is a function of the momentum space
coordinates and cannot be considered as constant. In this
case the extended VHS approach must be applied [3,20].

2 Model

The effective interaction between quasiparticles in
strongly correlated systems is very complex. In particular,
it depends on the spin and the current carried by quasipar-
ticles. Since for such superconducting systems, the conven-
tional phonon-mediated pairing mechanism raises doubts,
a generic, boson-mediated, strongly anisotropic pairing
mechanism is assumed [1,3].

For two-dimensional models of high-Tc superconduc-
tivity, the boson-mediated pairing mechanism correspond-
ing to on-site and nearest-neighbor interactions allows us
to obtain the attractive interaction in the reciprocal space
in the form (here ax = ay = 1) [3,21–23]

V (k,k′) = −V0 − V1[cos(kx − k′
x) + cos(ky − k′

y)], (1)

which consists of two channels: the isotropic channel with
the amplitude V0, and the anisotropic one with the am-
plitude V1. The attractive character of each channel is
provided when V0, V1 are positive. This interaction, after
some transformations, can be rewritten as

V (k,k′) = V s(k,k′) + V a(k,k′),

where V s(k,k′) = V s(−k,k′) = V s(k,−k′) and
V a(k,k′) = −V a(−k,k′) = −V a(k,−k′) are the spin-
singlet and the spin-triplet pairing potentials, respectively,
and they can be written in the following separated forms

V s(k,k′) = −V0 − V1(cos kx cos k′
x + cos ky cos k′

y)

= −V0 − 1
2
V1(cos kx + cos ky)(cos k′

x + cos k′
y)

−1
2
V1(cos kx − cos ky)(cos k′

x − cos k′
y), (2)

V a(k,k′) = −V1(sin kx sin k′
x + sin ky sink′

y). (3)

On the other hand the hopping mechanism coming from
the 2D tight-binding model, when the nearest-neighbor
and the next-nearest-neighbor integrals are taken into ac-
count, leads to the following dispersion relation

ξk = −2t0(cos kx + cos ky + η cos kx cos ky) − µ0, (4)

where η = 2t1/t0 < 1, and t0, t1 represent the nearest-
neighbor and the next-nearest-neighbor hopping integrals,
respectively [24]. The chemical potential µ0 fixes a shift
of the Fermi level at T = 0 in the case of doping and
a non-half-filled band, and it has been introduced in or-
der to control the carrier concentration n (0 < n < 1)
[7,8,14,20,25–27]. In the case of the 2D t–J model the

quantum Monte Carlo method yields the one-hole disper-
sion relation in the AF background in the form

ξk = −4t′ cos kx cos ky − 2t′′(cos 2kx + cos 2ky)− µ0, (5)

which corresponds to the 2D tight-binding band model
where the nearest-neighbor hopping is absent (t0 = 0),
as in the case of a hole moving within the same sub-
lattice to avoid distorting the antiferromagnetic back-
ground. Symbols t′ and t′′ denote hopping integrals be-
tween the second- and the third-nearest-neighbor Cu sites
on the CuO2 plane. The dispersion relation (5) can be
transformed to the form (4) after performing changes
of the momentum space variables kx �→ (kx + ky)/

√
2,

ky �→ (kx − ky)/
√

2, replacing the lattice constant 1 by√
2, and t′ by t0 as well as t′′ by t1. Since now η = 2t′′/t′,

the case η > 1 can be also considered [29].
Symmetry elements of the cuprate plane CuO2 corre-

spond to the group C4v. Hence, for a two-dimensional mo-
mentum space the subsets of basis functions of irreducible
representations of the group C4v are usually taken in the
following simplest forms (cf. Appendix A)

{coskx + cos ky}, (6)
{coskx − cos ky}, (7)
{sinkx sinky}, (8)
{sinkx sinky (cos kx − cos ky)} (9)
{sinkx, sin ky}. (10)

Since the basic function of the first subset (6) corresponds
to the trivial irreducible representation, instead of it the
function equal to unity is also sometimes assumed. Then
this set is replaced by { 1 }. All these functions are chosen
to be invariant under translations by the reciprocal lat-
tice vectors [30]. We emphasize that the above choice is
one of many possible and these functions can be replaced
by some more composed forms. In particular, multiplying
them by (1−cos kx cos ky)−1 results in setting up another
(more composed) set of functions being invariants of the
group C4v [20]. Moreover, the subset of basis functions
corresponding to the irreducible representations can be
taken e.g. as

{coskx + cos ky + η1 cos kx cos ky}, (11)
{(coskx − cos ky)[1 + η2(cos kx + cos ky)]}, (12)
{sinkx sinky [1 + η3(cos kx + cos ky)]}, (13)
{sinkx sinky (cos kx − cos ky)[1 + η4(cos kx + cos ky)]},

(14)

{sinkx[1+η5(cos kx+cosky)], sin ky [1+η5(cos kx+cosky)]},
(15)

where η1, η2, . . . , η5 are real numbers.
The functions (6)–(8), which are invariants of the

group C4v, are usually applied to represent the pairing
interaction V (k,k′) in accordance with equations (2) and
(3). Instead, the dispersion relation (4) can be expressed
by means of the function (11) which is another invariant
of the group C4v fixed for the trivial irreducible represen-
tation. Although symmetry properties of the functions (6)
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and (11) defined by elements of the group C4v are identi-
cal, these functions are not equivalent, except for the case
ηl = 0. It means that if ηl �= 0 two different sets of basis
functions appear.

In some approaches to high-Tc superconductors the
pairing interaction is assumed to be of a charge-coupled
type mediated by bosons. Then the maximum boson en-
ergy ωc is identified with the cut-off parameter imposed
on the one-particle energy. The high-Tc superconductor
is considered as a metallic system with a narrow, nearly
but less than half-filled (n � 0.5) conduction band of the
width 2ωc, where a non-zero pairing interaction covers the
whole conduction band. The dispersion relation is taken
in the form (4), thus µ0 � 0 and µ0 > 0. The parti-
cle energy is localized within the conduction band, so it
also satisfies the condition −ωc ≤ ξk ≤ ωc. Moreover, the
particle energy is much less than the Fermi energy EF, i.e.
ξk � EF. Therefore, in most of the discussed systems, one
can assume that all regular functions of ξk vary slightly
within the confined region of the width 2ωc, and the order
parameter can be considered as independent of ξk.

In other approaches stability of various symmetry su-
perconducting states is studied when the shape of the
Fermi surface is modified as the quasiparticle concentra-
tion n and hence µ0 are being changed. However, in this
case the simplified form of the dispersion relation was
taken into account. Including only the effective parameter
t0 (η = 0) Micnas et al. [26] determined the dependence of
the critical temperature Tc on the concentration n, for a
quasi-2D lattice, within the self-consistent RPA method,
and they observed a non-monotonic dependence of Tc on
n. Kuboki [27] in more precise considerations determined
the phase diagram and clarified the reason for the change
of the symmetry of the superconducting state due to the
change of the band structure. The main results, which re-
fer to the case t1 = 0 (η = 0), show that the d -wave
state is stabilized near half-filling (µ0 ≈ 0), while an ex-
tended s-wave state is formed at high (n → 1) and low
(n → 0) concentrations. In the region between d - and
s-wave states spin-triplet p-wave states appear. Instead,
in the case t1 �= 0 and t0 = 0, p-wave states appear at and
near to the half-filling, and d - or extended s-wave states
are formed away from half-filling.

Recently we have shown [8,20] that after a curvilinear
transformation for the dispersion relation of the form (4)
with η = 0 is performed, there appears a new function
— the kernel of the density of states describing the local
deformation or modification of quantum-mechanical states
in the (ξ, ϕ)-space, where the angular variable 0 ≤ ϕ < 2π
is the same as introduced in the standard polar coordinate
system. This kernel of the density of states can be written
in the form

K(ξ, ϕ) =
1

4πt0

1
√

z2 cos2 2ϕ + 4 sin2 2ϕ
,

where z = ξ/2t0 and ξk was replaced by ξ − µ0. Note
that it satisfies the conditions K(ξ, ϕ) = K (

ξ, ϕ + π
2

)
and

K(ξ, ϕ) = K (
ξ, π

2 − ϕ
)
, which are imposed by the symme-

try group C4v. Moreover, if ϕ = 0 or ϕ = π
2 the function

Fig. 1. The relation between µ0 — a shift of the Fermi level,
n — quasiparticle concentration and η = 2t1/t0. For nearly
half-filled conduction band, n � 0.5, one can assume µ0 � 0
for all η.

K(ξ, ϕ) ∼ z−1 and it has no singularities except for the
case when z → 0. Since this particular divergence does
not vanish after averaging over ϕ, and

ν(ξ) =
∫ 2π

0

dϕ

2π
K(ξ, ϕ) (16)

is the density of states (cf. Appendix B), it is al-
ways revealed in the DOS as the Van Hove singularity
[8,12,14,17,31–33].

The gap equation in the momentum space, obtained in
a self-consistent manner after employing the Green func-
tion formalism

∆k =
∑

k′
V (k,k′)

∆k′

Ek′
tanh

Ek′

2T
, (17)

where Ek =
√

(ξk − µ(T ))2 + ∆2
k, along with another

self-consistent equation

2n =
1
N

∑

k

(
1 − ξk − µ(T )

Ek
tanh

Ek

2T

)
, (18)

which determines the total chemical potential i.e. µ0 in-
cluded in ξk and being a function of the conduction band
filling n for the normal metallic phase at T = 0, and µ(T )
expressing its temperature correction (µ(0) = 0), consti-
tute the basic equations for theoretical investigations of
high-Tc superconductors. Here N denotes the total num-
ber of lattice sites.

Equation (18) in the limit ∆ = 0 and T = 0 can be
employed in order to derive a relation between µ0, n and η.
The obtained relation, which can be easily derived within
the present formalism, is given in Figure 1.

In the present paper we show that the basic equations
studied within the tight-binding band model or a model
adopted from the t–J model, after a sequence of curvilin-
ear transformations of the coordinate system can be for-
mulated in analytic forms depending on ξ and ϕ. Hence,
the separated pairing interaction varies slightly in the con-
fined region of the width 2ωc, and all expressions which
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are functions of ϕ satisfy the symmetry conditions of the
group C4v. In such an approach, the spatial structure of
the order parameter is determined by a predominant co-
efficient of expansion in the Fourier series in the angle ϕ,
where odd (even) terms of the Fourier expansion must be
omitted for antisymmetric (symmetric) spin pairing be-
cause of the Pauli exclusion principle.

3 Method of successive transformations

Our aim is to prove that a successive execution of some
specific transformations of a two-dimensional space al-
lows us to turn all expressions in equations (17) and (18)
into functions of ξ and ϕ, where in the transformed inte-
gral equations an additional expression appears, namely
the product of Jacobians of successive transformations
(cf. Appendix B). In Appendix B we show that every
change of integration variables can be formally treated as
a transformation of the integration region (here in a two-
dimensional space), where the deformation of the surface
of the new region is taken into account by means of the Ja-
cobian of the transformation. The product of Jacobians of
the successive transformations forms the Jacobian of the
complete transformation. Therefore, replacing finally the
summation over quantum-mechanical states by the inte-
gration over the particle energy, the following formula can
be achieved

∑

k

. . . =
∫

dξ

∫ 2π

0

dϕ

2π
K(ξ, ϕ) . . . ,

where according to equation (B.8), K(ξ, ϕ) = 2
(2π)2 J (ξ, ϕ)

is the kernel of the density of states corresponding to the
local deformation or modification of quantum-mechanical
states in the (ξ, ϕ)-space, and the density of states is given
by equation (16).

The imposed symmetry of the model under consider-
ation, which is of the group C4v, allows us to limit our
investigation to the quadrant kx,ky ≥ 0. Then

∑

k

. . . =
8

(2π)2

∫ π

0

dkx

∫ π

0

dky . . . , (19)

where the integration region corresponds to the appropri-
ate part of the Brillouin zone 0 ≤ kx ≤ π, 0 ≤ ky ≤ π with
the binding condition

−ωc ≤ ξk + µ0 ≤ ωc. (20)

3.1 The first transformation

We define the following transformation of the momentum
space

kx = arccos(1 − 2x), ky = arccos(1 − 2y).

The corresponding Jacobian is of the form

J1(x, y) =
4

√
1 − (1 − 2x)2

√
1 − (1 − 2y)2

, (21)

and the previous integration region becomes replaced by
0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Hence, the rhs of equation (19)
should be replaced by

8
(2π)2

∫ 1

0

dx

∫ 1

0

dy J1(x, y) . . . ,

and the dispersion relation (4) obtains the form

z = −(1 − 2x) − (1 − 2y) − η(1 − 2x)(1 − 2y), (22)

where z = ξ/2t0.

3.2 The conformal-like transformation

In order to make ξ one of the integration variables we
perform a conformal-like transformation [34]. Referring to
the formula (22) we have the relation

∇ξ(x, y) = 4t0 [1 + η(1 − 2y), 1 + η(1 − 2x)],

which allows us to formulate the differential equation

dy

dx
=

1 + η(1 − 2x)
1 + η(1 − 2y)

.

The solutions of this equation, by virtue of Picard’s the-
orem, always exist and they form a one-parameter family
of integral curves

φ(x, y) = 2 [(1 + η)y − ηy2 − (1 + η)x + ηx2], (23)

which isoclines φ(x, y) = C are perpendicular to equi-
energy lines ξ(x, y) = C′ because ∇ξ(x, y) · ∇φ(x, y) = 0.

Let us remark now, that equations (22) and (23) can
be read as

1 − η z = XY, 2ηφ = X2 − Y 2, (24)

where X = 1 + η − 2ηx, Y = 1 + η − 2ηy. In order to
simplify the calculation we derive the following Jacobian

J ′
2(x, y) =

∣
∣
∣
∣
∣

∂ξ
∂x

∂ξ
∂y

∂φ
∂x

∂φ
∂y

∣
∣
∣
∣
∣

= 8t0
(
X2 + Y 2

)
.

Hence employing the relation (B.4), we state that the Ja-
cobian of the current transformation can be expressed as

J2(ξ, φ) =
1

8t0

1
X2 + Y 2

, (25)

where X and Y should be found as functions of ξ and φ
based on equations (24). Moreover, the previous integral
region becomes replaced by (cf. [3])

−2 − η ≤ z ≤ 2 − η if η ≤ 1,

−2 − η ≤ z ≤ η if η ≥ 1,
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and hence −φ0(ξ) ≤ φ ≤ φ0(ξ), where

φ0(ξ) =
⎧
⎪⎪⎨

⎪⎪⎩

1
2(1+η)2

(
2 + η + ξ

2t0

) (
2 + 2η + η2 − η ξ

2t0

)
if ξ

2t0
≤ η

1
2(1−η)2

∣
∣
∣ 2 − η − ξ

2t0

∣
∣
∣
∣
∣
∣ 2 − 2η + η2 − η ξ

2t0

∣
∣
∣ if ξ

2t0
≥ η.

Now, the rhs of equation (19) obtains the form

8
(2π)2

∫ ωc

−ωc

dξ

∫ φ0

−φ0

dφJ
(1)
1 (ξ, φ)J2(ξ, φ) . . . ,

where the variable ξ satisfies the condition (20), so |ξ| �
2t0. We also include that after expressing x and y as func-
tions of ξ and φ the Jacobian J1(x, y) obtains the form
J

(1)
1 (ξ, φ).

3.3 The third transformation

Since our aim is to transform the coordinate system in
such a way that one of the coordinates is the particle en-
ergy ξ and the second one is chosen as the angular vari-
able ϕ, and the symmetry of the system in the introduced
coordinate system (ξ, ϕ) is conserved, we can define the
variable ϕ according to the relation y = x tan ϕ. Then
from equations (24) we obtain the formula

φ = 2(tanϕ − 1)x [1 + η − η(1 + tan ϕ)x] , (26)

where

x =
(1 + η)(1 + tan ϕ)

4η tan ϕ

−

√
(1 + η)2(1 + tan ϕ)2 − 4η

(
2 + η + ξ

2t0

)
tan ϕ

4η tanϕ
,

which has the following property: if we replace ϕ by π/2−
ϕ then φ −→ −φ. Since in the limit ϕ → 0 or η → 0 the
formula (26) is reduced to the following simple form

φ = φ0(ξ)
tanϕ − 1
tanϕ + 1

,

which retains the demanded symmetry, we define the next
transformation of the plane as

ξ = ξ, φ(ξ, ϕ) = φ0(ξ) f(ϕ), (27)

where
f(ϕ) =

sinϕ − cosϕ

sinϕ + cosϕ
, (28)

and −1 ≤ f(ϕ) ≤ 1 for 0 ≤ ϕ ≤ π/2, which is taken from
the integral region. The Jacobian of this transformation
has the form

J3(ξ, ϕ) =
2

1 + sin 2ϕ
φ0(ξ). (29)

Finally, the rhs of equation (19) becomes

8
(2π)2

∫ ωc

−ωc

dξ

∫ π/2

0

dϕJ (ξ, ϕ) . . . ,

where J (ξ, ϕ) = J (2)
1 (ξ, ϕ)J (1)

2 (ξ, ϕ)J3(ξ, ϕ) is the to-
tal Jacobian of the specified transformations, and the
Jacobians J (2)

1 (ξ, ϕ) and J (1)
2 (ξ, ϕ) are obtained from

J (1)
1 (ξ, φ) and J2(ξ, φ), respectively, after replacing φ by

ξ and ϕ according to the relations (27).

3.4 Kernel of the density of states

In order to derive the explicit form of the Jacobian
J (ξ, ϕ), and hence the kernel of the density of states
K(ξ, ϕ), we have to solve equations (24). After some alge-
bra we obtain

X ≡ X(ξ, ϕ) =
⎡

⎣

√(
1 − η

ξ

2t0

)2

+ η2φ2
0(ξ) f2(ϕ) + ηφ0(ξ) f(ϕ)

⎤

⎦

1
2

and

Y ≡ Y (ξ, ϕ) =
⎡

⎣

√(
1 − η

ξ

2t0

)2

+ η2φ2
0(ξ) f2(ϕ) − ηφ0(ξ) f(ϕ)

⎤

⎦

1
2

.

Note that X(ξ, π
2 − ϕ) = Y (ξ, ϕ). Moreover, x(ξ, ϕ) =

1
2η [1 + η − X(ξ, ϕ)] and y(ξ, ϕ) = 1

2η [1 + η − Y (ξ, ϕ)] .
Hence, employing equations (21), (25) and (29) we find

K(ξ, ϕ, η)=
η2

4πt0

1
√

η2 − [X(ξ, ϕ) − 1]2
√

η2−[Y (ξ, ϕ)−1]2

× 1
[X(ξ, ϕ)]2 + [Y (ξ, ϕ)]2

1
1 + sin 2ϕ

φ0(ξ),

where we also include the fact that the kernel of the den-
sity of states depends on the parameter η. Consistently,
we the density of states (16) takes the form

ν(ξ, η) =
2
π

∫ π/2

0

dϕK(ξ, ϕ, η). (30)

The forms of K(ξ, ϕ, η) for a few chosen values of the pa-
rameter η are given in Figure 2.

4 Pairing potential

The form of the symmetric and the antisymmetric (in the
momentum space) pairing potentials, which are responsi-
ble for the formation the spin-singlet, i.e. 1√

2
(|↑↓〉− |↓↑〉),
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Fig. 2. The kernel of the density of states for different values of the parameter η, where z = ξ/2t0.

(S = 0, M = 0), s-, d -, g-wave, etc. and the spin-triplet
i.e. 1√

2
(| ↑↓〉 + | ↓↑〉), (S = 1, M = 0), p-, f -wave, etc.

Cooper pairs, respectively, are given by equations (2) and
(3). Taking into account that cos kx = 1

η [X(ξ, ϕ) − 1] ,
and cos ky = 1

η [Y (ξ, ϕ) − 1] we can rewrite the pairing
potentials as

V s(ξ, ϕ ; ξ′, ϕ′) = −V0 − 1
2η2

V1 [X(ξ, ϕ)

+Y (ξ, ϕ) − 2] [X(ξ′, ϕ′) + Y (ξ′, ϕ′) − 2]

− 1
2η2

V1[Y (ξ, ϕ)−X(ξ, ϕ)] [Y (ξ′, ϕ′) − X(ξ′, ϕ′)] (31)

and
V a(ξ, ϕ ; ξ′, ϕ′) =

− 1
η2

V1

{
(±)

√
η2−[X(ξ, ϕ)−1]2(±)

√
η2 − [X(ξ′, ϕ′)−1]2

+ (±)
√

η2 − [Y (ξ, ϕ) − 1]2 (±)
√

η2 − [Y (ξ′, ϕ′) − 1]2
}

,

(32)

where the sign (+) or (−) should be taken for appropriate
values of ϕ, ϕ′ (0 ≤ ϕ, ϕ′ < 2π) according to the sym-
metry relations of the functions: sin kx, sink′

x and sinky ,
sink′

y in the momentum space (cf. Appendix A). Hence, in
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the numerical analysis we can consider harmonic functions
sin nϕ and cosnϕ of the Fourier series expansion obtained
according to the relations given in Appendix C.

4.1 Permissible forms of separated potential

Working with a single Fourier component allows us to
study the properties set by each harmonic function while
avoiding the application of a number of free Fourier coeffi-
cients. Such approach is fully justified if the chosen Fourier
component dominates the others. Then the pairing poten-
tial can be reduced to one of the following forms

1 pure s-wave pairing

V s(ξ, ϕ ; ξ′, ϕ′) = −V0 − V1 χ0(ξ, η)χ0(ξ′, η)

= −V0 − U0(η) v0(ξ, η) v0(ξ′, η);

2 pure p-wave pairing

V a(ξ, ϕ ; ξ′, ϕ′)

= −2V1 χ1(ξ, η)χ1(ξ′, η) [cosϕ cosϕ′ + sin ϕ sinϕ′]

= −2U1(η) v1(ξ, η) v1(ξ′, η) [cosϕ cosϕ′+sin ϕ sinϕ′];

3 pure d-wave pairing

V s(ξ, ϕ ; ξ′, ϕ′) = −2V1 χ2(ξ, η)χ2(ξ′, η) cos 2ϕ cos 2ϕ′

= −2U2(η) v2(ξ, η) v2(ξ′, η) cos 2ϕ cos 2ϕ′;

4 pure g-wave pairing

V s(ξ, ϕ ; ξ′, ϕ′) = −2V1 χ4(ξ, η)χ4(ξ′, η) cos 4ϕ cos 4ϕ′

= −2U4(η) v4(ξ, η) v4(ξ′, η) cos 4ϕ cos 4ϕ′;

Here vl(ξ, η) = χl(ξ, η)/χ̄l(η), Ul(η) = V1 [χ̄l(η)]2, and

χ̄l(η) =
1

2ωc

∫ ωc

−ωc

χl(ξ, η) dξ

is the η-dependent mean value of the Fourier coefficient
χl(ξ, η) in the pairing region. For a fixed value of the pa-
rameter η the functions Ul(η) modify coupling coefficients
of the pairing channel diversely for different l, and hence
they have a significant influence on the ultimate choice of
the symmetry of the superconducting state, i.e. the angu-
lar structure of the order parameter, which coincides with
the Cooper pairs wave function of a pure pairing state. In
Figure 3 the forms of the Fourier coefficients correspond-
ing to a specific symmetry of the pairing potential are
presented for 0 < η ≤ 1.62 [24,28,29].

However, in order to analyze the competition between
different symmetry types of superconducting states we
have to compare the transition temperatures Tc(l, η) de-
rived from the gap equation.

4.2 Order parameter and basic equations

Reduction of the pairing potential (1) to one of the sepa-
rable forms 1–4 causes that the order parameter must be
taken as

∆(ξ, ϕ, l, η) = ∆(T ) vl(ξ, η)D(ϕ, l),

where v0(ξ, η) ≡ 1 if V0 � V1. The angular structure of the
order parameter is determined by the Fourier harmonics
as follows

D(ϕ, 0) = 1 for s-wave pairing

D(ϕ, 1) =
√

2 cos(ϕ + β1) for p-wave pairing

D(ϕ, 2) =
√

2 cos 2ϕ for d-wave pairing

D(ϕ, 4) =
√

2 cos 4ϕ for g-wave pairing

where solely β1 = 0, ±π/4, π/2 can be included. Then
the gap equation (17) can be rewritten in the following
standardized form

1 = Ul(η)
∫ 2π

0

dϕ

2π

∫ ωc

−ωc

dξ K(ξ, ϕ, η)
v2

l (ξ, η)D2(ϕ, l)
E(ξ, ϕ)

× tanh
E(ξ, ϕ)

2T
, (33)

which is common to models of superconductivity with
an arbitrary dispersion relation realized in pure pairing
states. Moreover, equation (18) reads

2n =
∫ 2π

0

dϕ

2π

∫ ωc

−ωc

dξ K(ξ, ϕ, η)
[
1 − ξ − µ

E(ξ, ϕ)

× tanh
E(ξ, ϕ)

2T

]
, (34)

where E(ξ, ϕ) =
√

(ξ − µ)2 + ∆2(ξ, ϕ), and µ = µ0 +
µ(T ). We also define the mean value of the density of
states (30) as

ν0(η) =
1

2ωc

∫ ωc

−ωc

dξ ν(ξ, η). (35)

4.3 The BCS-type approximation

Let us concentrate hereafter on the case of nearly half-
filled system with µ0 � 0 and assess the actual pair-
ing coefficients and the transition temperatures applying
the BCS-type approximation when µ(T ) � 0. Replacing
the kernel of the density of states by ν0(η) and putting
vl(ξ, η) ≡ 1 we can reduce the gap equation (33) to the
BCS-type form. Hence, the actual dimensionless pairing
coefficients take the form ν0(η)Ul(η)/2 and the transition
temperatures can be expressed as

Tc0(l, η) =
2eγ

π
ωc exp

[
− 2

ν0(η)Ul(η)

]
, (36)
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Fig. 3. The Fourier coeffi-
cients χl(ξ, η) corresponding to:
(a) s-wave, (b) p-wave, (c) d -
wave, (d) g-wave symmetry of
the pairing potential for differ-
ent values of the parameter η,
where z = ξ/2t0.

where γ ≈ 0.577 is the Euler constant.
The comparison of forms of the actual pairing co-

efficients and transition temperatures in the BCS-type
approximation are presented in Figures 4a and 4c,
respectively. Moreover, in Figure 4b the dependence of
the reduced mean value of the density of states on the
parameter η is displayed. The obtained results show that
within the BCS-type approximation the d -wave state is
preferred if exclusively spin-singlet pairs can be formed.
On the other hand, since U1(η) > U2(η) for all values of
η the spin-triplet (S = 1, M = 0) p-wave state is the pre-
ferred one, in general. The isotropic s-wave pairing could

be realized only if the amplitude V0 dominated over V1.
Then U0 should be replaced by V0 and v0(ξ, η) ≡ 1. In the
opposite case, the anisotropic pairing is preferred.

4.4 Application of the obtained equations

Equations (33) and (34) can be applied to derive the
amplitude ∆(T ) of the order parameter and the chemi-
cal potential µ(T ) for the superconducting phase with the
symmetry corresponding to l = 0, 1, 2 or 4. They also al-
low us to estimate some characteristic parameters of a
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Fig. 4. The BCS-type approximation. (a) The relation between actual s-wave (dot), p-wave (solid), d -wave (dash), g-wave
(dash-dot) symmetry pairing coefficients Ul(η) and V1 as functions of η (0 < η ≤ 1.62). (b) The reduced mean value of the
density of states πt0ν0(η) and (c) the appropriate transition temperatures Tc0(l, η) for V1 = 2πt0 and ωc ≈ 560 K.

superconductor. Employing algebraic methods as devel-
oped in [18,34] and including z = ξ/2t0, ς = µ(T )/2t0,
c = ωc/2t0, and substituting τ = T/t0 we can derive the
equation

ln
τc(l, η)
τc0(l, η)

=
1
2

∫ c

−c

dz

[
1

z − ςc
v2

l (z, η)I2(z, l, η)

× tanh
z − ςc
τc(l, η)

− 1
z

tanh
z

τc(l, η)

]
, (37)

which allows us to evaluate the transition temperature
Tc(l, η) = τc(l, η)t0 with respect to Tc0(l, η) defined by
equation (36), where ςc = µ(Tc)/2t0 must be found from
equation (34) after putting ∆ = 0. Moreover, the reduced
value of the specific heat jump at the transition tempera-
ture are of the form

∆C (Tc(l, η))
ν1(l, η)Tc(l, η)

=

− 8
∫ c

−c dz v2
l (z, η)I2(z, l, η) d

dz tanh((z − ςc)/τc(l, η))

τ2
c (l, η)

∫ c

−c
dz

z−ςc
v4

l (z, η)I4(z, l, η) d
dz

tanh((z−ςc)/τc(l,η))
z

,

(38)

where

ν1(l, η) =
ν0(η)
2τc

∫ c

−c

dz v2
l (z, η) I2(z, l, η) cosh−2 z − ςc

τc
,

I2n(z, l, η) =
1

ν0(η)

∫ 2π

0

dϕ

2π
K(z, ϕ, η)D2n(ϕ, l),

and I0(z, l, η) ≡ I0(z, η). Moreover, it can be shown that
I2(z, 1, η) = I0(z, η) [34].

The formulas (37) and (38) allow us to evaluate the
characteristic ratios in superconductivity, i.e. Tc/Tc0 and
∆C(Tc)/CN(Tc), where the normal state specific heat

CN(T, η) =
4 ν0(η)T

τ3

∫ c

−c

dz I0(z, η) (z − ς)2 cosh−2 z − ς

τ
.

According to the definition of the isotope shift, α =
− ∂ ln Tc/∂ ln M , and the relation Tc0M

1/2 = const., the
isotope shift can be found from the formula

α(l, η) =
1
2

(
∂ ln Tc0(l, η)
∂ ln Tc(l, η)

)−1

.

Hence, employing equation (37) one can find

α(l, η) = τc(l, η)

×
[∫ c

−c

dz v2
l (z, η)I2(z, l, η) cosh−2 z − ςc

τc(l, η)

]−1

, (39)

where terms of smaller orders are omitted. According to
the obtained formula the isotope shift is a composed func-
tion of η.
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Fig. 5. (a) The transition temperatures Tc(1, η) (solid) and Tc(2, η) (dash) obtained within the extended VHS for V1 = 2πt0
and V0 = 0 in comparison with the transition temperatures T ∗

c (2, η) (dot) obtained in the frame of the standard VHS, and
T ∗

c (0, η) (dash-dot) obtained for V0 = 2πt0 [χ̄2(0)]2 and V1 = 0. (b) Supreme values of the transition temperatures Tc(1, 0)
(solid), Tc(2, 0) (dash), T ∗

c (2, 0) (dot) for 0.6 ≤ V1/2πt0 ≤ 1.9.

In the BCS-type approximation, when vl(z, η) ≡ 1,
ν(z, η) = ν0(η), and I2n(z, l, η) = 1, we have ν1(η) =
ν0(η), CN(T, η) = 2

3π2ν0(η)T and α(l, η) = 1/2.
Note that in the Van Hove scenario method we have to

replace K(z, ϕ, η) by ν(z, η) where ν(z, η) = I0(z, η) ν0(η).
In such case all expressions I2n(z, l, η) reduce to the forms

I2n(z, l, η) =
[

1
2n

(
2n

n

)
(1 − δl0) + δl0

]
I0(z, η),

so I2(z, l, η) = I0(z, η) for l = 0, 1, 2, 4. The latter relation
causes that equations (37) and (39) become identical for
all l after including vl(z, η) ∼= 1, what implies that the
transition temperatures Tc(l, η) keep their mutual rela-
tions as for Tc0(l, η), the isotope shifts α(1, η) and α(2, η)
coincide, and the spin-triplet p-wave symmetry supercon-
ducting state is preferred by this model.

5 Numerical results

The obtained formulas (37)–(39) allow us to estimate Tc,
∆C(Tc) and α as functions of the parameter η in a simple
manner. They also enable us to study them in detail and
compare with the respective values evaluated in the case
when solely the function of the density of states is taken
into account. Employing the experimental data [12,29],
where one can find η = 0.375, 0.917, 1.055, 1.113 or 1.53,
t0 = 0.24 eV (≈ 2800 K), and ωc = 0.026 ÷ 0.065 eV,
we may chose ωc = 0.0048 eV (≈ 560 K), and hence
c = ωc/2t0 ≈ 0.1. Because the reduced transition tem-
perature τc(l, η) = Tc(l, η)/t0 should satisfy the relation
τc(l, η) ≤ 0.05 (i.e. Tc(l, η) ≤ 140 K), then τc(l, η) < c or
τc(l, η) � c.

In numerical evaluations we take into consideration
that 0 < η ≤ 1.62, and we assume that the effective di-
mensionless pairing coefficient 1

2ν0 (η)U2(η) < 0.41, what
satisfies the weak-coupling condition, though the pair-
ing coefficient V1 can be large (V1 = 2.87 eV) such that
the standard dimensionless coefficient achieves the limit
1
2ν0 (0)V1 = 0.815. Moreover, we also assume that V0 = 0,
except for the case of s-wave symmetry superconducting
state when we assume that V0 = 2πt0 [χ̄2(0)]2 and V1 = 0
(cf. Fig. 5a).

In Figure 5 we present transition temperatures ob-
tained from equation (37) after employing equation (36)
for p-wave and d -wave symmetry superconducting states.

The results obtained within the developed formalism
of the extended Van Hove Scenario [34] show that for
V1 = 2π t0 = 1.5 eV, when 1

2ν0 (0)U2(0) = 0.215, the
supreme values of the transition temperatures are equal to
Tc(1, 0) = 21.1 K, Tc(2, 0) = 52.6 K and Tc(2, η) > Tc(1, η)
for 0 < η < 0.256. Moreover, Tc(1, 0.256) = Tc(2, 0.256) =
2.47 K, and Tc(1, 1.62) = 0.031 K, Tc(2, 1.62) = 4.41 ×
10−6 K. Hence, in cuprates the d -wave symmetry super-
conducting state is realized for sufficiently small η. In-
stead, when η exceeds a characteristic value, the p-wave
symmetry spin-triplet pairs should appear. Hence, the p-
wave pairing becomes plausible by virtue of the t–J model
where magnetic correlation effects in the CuO2 planes de-
termine the dispersion relation, which then has a direct
influence on the coefficients of the Fourier expansion of
the pairing potential [1,3].

Therefore, we maintain that in the cuprate supercon-
ductors no large on-site Coulomb repulsion is necessary to
destabilize the s-wave pairing, since the forms of the sep-
arated potential responsible for the formation of d -wave
or p-wave pairing dominate. Moreover, any on-site inter-
action (attractive or repulsive) always drops out of the d -,
g- and p-wave gap equation (33), cf. reference [3].

The transition temperature T ∗
c (2, η) obtained accord-

ing to the standard Van Hove Scenario, when I2(z, 2, η) is
replaced by I0(z, η), is lower that Tc(2, η) and Tc(1, η) for
all η, and it coincides with T ∗

c (0, η) of the s-wave symme-
try superconducting state obtained for V0 = 2πt0 [χ̄2(0)]2
and V1 = 0. Thus, the application of the standard VHS
leads to the conclusion that in the t–J model the p-wave
pairing must be exclusively realized for all values of the
parameter η.

Moreover, the derived supreme values of the transi-
tion temperatures reveal the relation Tc(2, 0) > Tc(1, 0) >
T ∗

c (2, 0) for the discussed range of the parameter V1, and
only Tc(2, 0) can exceed 100 K for the effective dimension-
less pairing coefficient equal to 0.308.

In Figures 6a and 6b we present the reduced specific
heat jump at the transition temperature and the isotope
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Fig. 6. (a) The reduced value of the specific heat jump at the transition temperature for p-wave (solid) and d -wave (dash)
symmetry superconducting states plotted against the BCS-model value 9.38 (dot). In the limit η → 0 they are equal to 5.35
and 5.17, respectively, though they are almost constant around 5.3 for all values of the parameter η under consideration. (b)
The isotope shift α(l, η) for p-wave (solid) and d -wave (dash) symmetry superconducting states plotted against the BCS-model
value 0.5 (dot). In the limit η → 0 they are equal to 0.35 and 0.22, respectively. Note that the supreme value α(2, 0.091) = 0.345
and for η ≥ 0.256 α(1, η) ≈ 0.5.

shift α(l, η) for p-wave and d -wave symmetry supercon-
ducting states.

We should also mention that the reduced specific heat
jump evaluated for d -wave symmetry superconducting
state in the standard VHS approach is around 20 per cent
greater than that presented in Figure 6a, whereas the iso-
tope shift coincides with that obtained for the p-wave sym-
metry superconducting state presented in Figure 6b.

The above discussion evidences that the lack of the
competition between singularities in the kernel of the den-
sity of states and pairing coefficients as in the BCS-type or
standard VHS approaches causes that the p-wave symme-
try superconducting state absolutely dominates, since it
corresponds to the largest absolutely pairing coefficient
U1(η). This fact implies that these approaches cannot
be employed in investigations of anisotropic superconduc-
tors [8,20,34].

6 Conclusions

Within the present formalism we have demonstrated that
the anisotropic model of a high-Tc superconductor with
a dispersion relation established in the frame of the two-
dimensional one-band tight-binding or t–J approaches and
a boson-mediated strongly anisotropic pairing mechanism,
whose elements of symmetry form the group C4v, can
be transformed into the (ξ, ϕ)-space, where the Fourier
harmonics cosnϕ and sin nϕ are basis functions of irre-
ducible representations of the group C4v. As distinct from
other approaches [3,21,23] the set of functions (cosnϕ,
sin nϕ) we have applied is complete and orthonormal. This
property allowed us to express the pairing interaction in
terms of the Fourier harmonics by means of orthogonal
projections. Then the structure of the order parameter
is determined by the dominant Fourier component of the
separable potential. Although particular terms of the sep-
arated potential contain Fourier harmonics with different
n, the values of the functions χ4i(ξ, η), χ1+4i(ξ, η) and
χ2+4i(ξ, η) decrease with increasing i. Hence, the plausi-
ble s-, p-, d -, or g-wave symmetry superconducting states
correspond merely to 1, cos(ϕ + α1), cos 2ϕ, or cos 4ϕ, re-
spectively, i.e. when n is a small number. Thus, the pairing

potential after expansion in a double Fourier series allows
us to define and identify the order parameter with respect
to harmonic functions sinnϕ and cosnϕ.

The obtained results prove that the characteristic pa-
rameters in the t–J or two-dimensional tight-binding band
models like the transition temperature, the specific heat
jump, and the isotope shift can be derived in an analytic
manner. The obtained form of the gap equation, which
contains analytic functions of the one-particle energy ξ
and the polar angle ϕ, coincides with the results of the
extended Van Hove scenario [8,20,34], and can be em-
ployed to find the order parameter amplitude ∆(T ), and
other thermodynamic functions [35].

According to the developed formalism both the
anisotropic attractive potential and dispersion relation
have a crucial impact on the value of the transition tem-
perature for a fixed symmetry superconducting state. The
anisotropic attractive potential can be expanded in a
double Fourier series (cf. Sect. 4.1), and the parameters
Ul(η) = V1 [χ̄l(η)]2 correspond to the coupling constants
in the BCS-type factorizable interaction. Instead, the dis-
persion relation implies the form of the kernel of the den-
sity of states and its singularities, which are necessary to
enhance the transition temperature. Since the effective di-
mensionless parameter 1

2ν0(η)Ul(η) is a decreasing func-
tion of η for all l, one should apply the weak-coupling
formalism also for a strong attractive anisotropic poten-
tial until V1 = 2.87 eV, or for a very strong attractive
anisotropic potential, if η is sufficiently large. Detailed
numerical calculations show that the spin-singlet d -wave
symmetry superconducting state is preferred for small val-
ues of η, when singularities of K(ξ, ϕ) are near to the Fermi
surface, what is expected for the phonon-mediated pairing,
as in the 2D one-band tight-binding model. On the other
hand for sufficiently large η, as in the t–J model, which is
relevant to the magnon-mediated pairing, the spin-triplet
p-wave symmetry superconducting state has to be formed.
So, if strong magnetic correlations determine the pairing
potential (of a magnetic origin) and form the dispersion
relation, the spin-triplet p-wave superconducting state is
preferred [1,3].
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We have considered the problem of stability of spin-
singlet and spin-triplet superconducting states in de-
pendence on the ratio of the next-nearest-neighbor and
nearest-neighbor transfer integrals η = 2t1/t0 for near
half-filling when n � 0.5 and µ0 � 0. This is distinct
from the problems where stability of spin-singlet and spin-
triplet superconducting states was investigated in depen-
dence on the carrier concentration n (the reduced electron
density) with η = 0 [26,27], or t0 = 0 and t1 �= 0 which
corresponds to η → ∞ [27].

The presented results agree with some obtained by
Kuboki [27] in two specific cases when the used param-
eters coincide, i.e. for η = 0 and µ0 = 0 (n = 0.5) the
dx2−y2-wave superconducting state is stabilized, and for
η � 1 and µ0 = 0 the p-wave superconducting state dom-
inates. Moreover, one can note that the enhancement of
n (if η = 0), or η (if n = 0.5) results in the replacement
of the stable d -wave superconducting state by the p-wave
one, what suggests the equivalent impact of the both pa-
rameters η and n.

The estimated values of the reduced specific heat jump
for p-wave and d -wave symmetry superconducting states
show that they are comparable and almost constant for all
η under discussion, whereas the values of the isotope shift
for the d -wave symmetry superconducting state are about
1.5 times smaller than the respective values of the isotope
shift in the p-wave symmetry superconducting state.

Moreover, we have also demonstrated that the transi-
tion temperatures evaluated for d -wave symmetry super-
conducting state within the standard Van Hove scenario
approach and p-wave symmetry superconducting state,
which are identical both in the extended and standard
Van Hove scenario, prefer the p-wave symmetry super-
conducting state for all values of η, just as does the BCS-
type approximation. This crucial result proves that while
considering a model of a superconductor with anisotropic
pairing potential one has to include the kernel of the den-
sity of states K(ξ, ϕ), which corresponds to the product
of Jacobians of subsequently performed transformations,
instead of the density of states ν(ξ) as e.g. in the standard
Van Hove scenario.

Although the parameter η is fixed and constant for
each superconductor, one can modify the application
range of the model by placing the system in an uni-
form perpendicular magnetic field. Since we take into ac-
count spin-triplet paired states with the spin projection
Sz = 0 and spin-singlet paired states, which are affected
by the magnetic field due to the Zeeman coupling, inef-
fectively, the Zeeman coupling leads solely to a renormal-
ization of the chemical potential µ → µ̄ = µ ± 1

2gµBH .
Thus, the magnetic field H moves singularities in K(ξ, ϕ)
away from the Fermi surface, and reduces the enhance-
ment of the transition temperature. Therefore, eventu-
ally for sufficiently large H the field-induced transition
from spin-singlet to spin-triplet superconductivity should
be observed, as it has been reported recently [7].

This work was supported by the grant No. PBZ-MIN-
008/P03/2003.
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Fig. A.1. Elements of tetragonal planar symmetry corre-
sponding to the group C4v .

Appendix A: Basis functions of C4v irreducible
representations

The symmetry group of a square (in a two-dimensional
space), denoted as C4v, possesses one four-fold axis of
symmetry, where r defines the rotation by the angle π/2,
and four planes of symmetry a, b, c, d, which intersect at
this axis. Hence, the group C4v = {e, r, r2, r3, a, b, c, d},
where e is the identity element, possesses eight elements
of symmetry as shown in Figure A.1, and it is a non-
abelian group. This elements can be separated into five
equivalence classes, namely two single-element: {e}, {r2},
and three two-element: {r, r3}, {a, b}, {c, d}. It implies
that the group C4v possesses five irreducible represen-
tations, i.e. four different one-dimensional and one two-
dimensional. Hence, there must always exist six basis func-
tions gathered in four subsets containing one function:
{f1}, {f2}, {f3}, {f4} and one subset containing two func-
tions: {f5 f6}. These subsets are invariants of the group
C4v. Hence, the symmetry elements {e, r, r2, r3, a, b, c, d}
acting on the functions f1, f2, f3, f4 leave them un-
changed (up to the sign), whereas acting on the functions
f5, f6 they can form a linear combination of them. The
properties of the invariant functions {fi}, i = 1, 2, 3, 4
can be classified with the reference to particular elements
g of the group C4v as follows:

A. The single-element subset {f1} of basis functions, cor-
responding to the trivial representation, such that
g f1 = f1 for all g ∈ {e, r, r2, r3, a, b, c, d}.

B. The single-element subset {f2} of basis functions, cor-
responding to the representation with the trivial rep-
resentation of the subgroup C2v, such that
g f2 = f2 if g ∈ {e, r2, a, b} and g f2 = −f2 if
g ∈ {r, r3, c, d}.

C. The single-element subset {f3} of basis functions, cor-
responding to the representation with the trivial rep-
resentation of another tetra-subgroup, such that
g f3 = f3 if g ∈ {e, r2, c, d} and g f3 = −f3 if
g ∈ {r, r3, a, b}.
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D. The single-element subset {f4} of basis functions, cor-
responding to the representation with the trivial rep-
resentation of the cyclic subgroup, such that
g f4 = f4 if g ∈ {e, r, r2, r3} and g f4 = −f4 if
g ∈ {a, b, c, d}.

The properties of the invariant subset of basis functions
{f5, f6} corresponding to the two-dimensional irreducible
representation can be classified with the reference to par-
ticular elements g of the group C4v in one of the following
two manners

Es. The two-element subset of the functions {f5, f6} for
the two-dimensional representation representation:

g f5 =f5ifg ∈ {e, a}, g f5 = −f5ifg ∈ {r2, b},
g f5 =−(−1)sf6ifg ∈ {r, d}, g f5 =(−1)sf6ifg ∈ {r3, c},
and

g f6 =f6ifg ∈ {e, b}, g f6 =−f6ifg ∈ {r2, a},
g f6 =−(−1)sf5ifg ∈ {r3, d}, g f6 = (−1)sf5ifg ∈ {r, c},

where s = 1 or 2. Acting with the elements of the group
C4v on a two-dimensional momentum space with Carte-
sian coordinate system, the components of the vector
k = [kx, ky] are being transformed as follows:

g kx = kxifg ∈ {e, a}, g kx = −kxifg ∈ {r2, b},
g kx = kyifg ∈ {r, d}, g kx = −kyifg ∈ {r3, c},

and

g ky = ky ifg ∈ {e, b}, g ky = −kyifg ∈ {r2, a},
g ky = kxifg ∈ {r3, d}, g ky = −kxifg ∈ {r, c}.

The above relations after including the formula g fi(kα) =
fi(g kα), where i = 1, 2, . . . , 6 and α = x or y, allow us to
choose invariant subsets of basis functions in accordance
with the introduced classification in the form given by
(6)–(10). Since g cos kx cos ky = cos kx cos ky for all g ∈
C4v, one has the right to define invariant subsets of basis
functions as (11)–(15).

In the case of the polar coordinate system the elements
of the group C4v acting on the angular coordinate ϕ trans-
form it in the following manner

e ϕ = ϕ, r ϕ = ϕ − π

2
, r2 ϕ = ϕ − π, r3 ϕ = ϕ − 3π

2
,

a ϕ = −ϕ, b ϕ = π − ϕ, c ϕ =
3π

2
− ϕ, d ϕ =

π

2
− ϕ.

Hence, applying the formula g f(ϕ) = f(g ϕ) to
the Fourier harmonics: 1, cosnϕ, sin nϕ, where n =

1, 2, 3, . . ., we state that g 1 = 1 for all g ∈ C4v, and
moreover

e cosnϕ = cosnϕ, e sinnϕ = sin nϕ

r cosnϕ =
{

(−1)i cosnϕ if n = 2i
(−1)i sin nϕ if n = 1 + 2i

r sin nϕ =
{

(−1)i sinnϕ if n = 2i
−(−1)i cosnϕ if n = 1 + 2i

r2 cosnϕ = (−1)n cosnϕ, r2 sin nϕ = (−1)n sin nϕ

r3 cosnϕ =
{

(−1)i cosnϕ if n = 2i
−(−1)i sin nϕ if n = 1 + 2i

r3 sin nϕ =
{

(−1)i sin nϕ if n = 2i
(−1)i cosnϕ if n = 1 + 2i

a cosnϕ = cosnϕ, a sinnϕ = − sinnϕ

b cosnϕ = (−1)n cosnϕ, b sin nϕ = −(−1)n sin nϕ

c cosnϕ =
{

(−1)i cosnϕ if n = 2i
−(−1)i sinnϕ if n = 1 + 2i

c sin nϕ =
{−(−1)i sin nϕ if n = 2i
−(−1)i cosnϕ if n = 1 + 2i

d cosnϕ =
{

(−1)i cosnϕ if n = 2i
(−1)i sin nϕ if n = 1 + 2i

d sin nϕ =
{−(−1)i sin nϕ if n = 2i

(−1)i cosnϕ if n = 1 + 2i

where i = 0, 1, 2, . . . The obtained relations allow us to
perform the following classification for the functions 1,
cosnϕ and sin nϕ.

1. The functions 1 and cos 4iϕ, i = 1, 2, 3, . . ., are in-
variants and each of them has the same properties as
function f1 of the subset A.

2. The functions sin 4iϕ, i = 1, 2, 3, . . ., are invariants
and each of them has the same properties as function
f4 of the subset D.

3. The functions cos(1+4i)ϕ and sin(1+4i)ϕ for a fixed
i = 0, 1, 2, . . ., have the same properties as functions
f5 and f6, respectively, of the invariable subset E1.

4. The functions cos(2 + 4i)ϕ, i = 0, 1, 2, . . ., are invari-
ants and each of them has the same properties as func-
tion f2 of the subset B.

5. The functions sin(2 + 4i)ϕ, i = 0, 1, 2, . . ., are invari-
ants and each of them has the same properties as func-
tion f3 of the subset C.

6. The functions cos(3+4i)ϕ and sin(3+4i)ϕ for a fixed
i = 0, 1, 2, . . ., have the same properties as functions
f5 and f6, respectively, of the invariable subset E2.

Thus, all Fourier harmonics: 1, cosnϕ, sin nϕ can be col-
lected in only five possible types of invariant subsets.
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Appendix B: Curvilinear transformations

General properties of curvilinear transformations and
their relation to the density of states and its kernel can
be considered as follows: for two arbitrary, orthogonal,
curvilinear coordinate systems in a d-dimensional space,
x1, . . . , xd and y1, . . . , yd, where d = 2 or 3, the coor-
dinates of a vector in the former system can be always
expressed as functions of coordinates in the latter one,
i.e. xi = xi(y1, . . . , yd) and yj = yj(x1, . . . , xd), where
i, j = 1, . . . , d, and x̂1, . . . , x̂d is a basis of orthogonal unit
vectors associated with the point [x1, . . . , xd] of this space.
Since we consider curvilinear systems, their basis vectors
defined for particular points of the space can be oriented
accidentally. The infinitesimal translation vector fixed at
the point [x1, . . . , xd] has the form dx =

∑d
i=1 x̂idxi,

whereas the same vector dx in the other coordinate sys-
tem can be expressed as dx =

∑d
i=1

∂x
∂yi

dyi, where the

vectors ŷi = ∂x/∂yi

|∂x/∂yi| form an orthonormal basis of the
other coordinate system, and they are tangent to the lines
yi, so for particular points of the space they are oriented
accidentally as well. The following relation

dyi = ∇xyi · dx =
d∑

j=1

∇xyi · ∂x
∂yj

dyj,

fulfilled for each coordinate yi implies that

∇xyi · ∂x
∂yj

= δij . (B.1)

The area of an infinitesimal rectangle defined in a two-
dimensional space or the volume of an infinitesimal cuboid
defined in a three-dimensional space, where the vector
dx is its diagonal originating from the vertex [x1, . . . , xd],
can be expressed as dτ = [x̂1dx1, . . . , x̂ddxd] =

∏d
i=1 dxi.

Here, for d = 3 the symbol [·, ·, ·] denotes the triple prod-
uct of three vectors, instead for d = 2 the symbol [·, ·] is
the exterior product of two vectors. Note that in the other
coordinate system the corresponding infinitesimal element
of the space has the form

dτ ′ =
d∏

i=1

dxi =
[

∂x
∂y1

dy1, . . . ,
∂x
∂yd

dyd

]
= J (y1, . . . , yd)

d∏

i=1

dyi,

(B.2)

where

J (y1, . . . , yd) =
[

∂x
∂y1

, . . . ,
∂x
∂yd

]
=

∣
∣∣
∣
∂xi

∂yj

∣
∣∣
∣ (B.3)

is the Jacobian of the transformation from the former to
the latter coordinate system. Performing a rotation of the
former coordinate system one can make the versors x̂i

overlap versors ŷi, and hence dτ ′ = dτ =
∏d

i=1 dxi. Since
the Jacobian of the coordinate system rotation is always

equal to 1, then according to the theorem about the multi-
plication of determinants we state that the Jacobian (B.3)
keeps its form. Moreover, the total symmetry of the prob-
lem under consideration ensures that for the inverse trans-
formation (from the latter to the former coordinate sys-
tem) equation (B.2) must be of the form

d∏

i=1

dyi = J ′(x1, . . . , xd)
d∏

i=1

dxi,

where J ′(x1, . . . , xd) =
∣
∣
∣ ∂yi

∂xj

∣
∣
∣ , which allows us to conclude

that the introduced Jacobians satisfy the relation

J (y1, . . . , yd)J ′(x1, . . . , xd) = 1. (B.4)

On the other hand, taking into account that the new
coordinate system is orthonormal then including equa-
tion (B.1) the Jacobian (B.3) reads

J (y1, . . . , yd) =
∣
∣
∣∣
∂x
∂y1

∣
∣
∣∣ · . . . ·

∣
∣
∣∣
∂x
∂yd

∣
∣
∣∣ =

1
|∇xy1| · . . . · |∇xyd| .

(B.5)
Let us emphasize that the Jacobian of any transforma-
tion as well as the gradient of a function, in particular
|∇xyi|, are invariants of an orthogonal transformation.
The infinitesimal translation vector originating from the
vertex [x1, . . . , xd], which is the diagonal of the element
dτ can be written in the form dx =

∑d
i=1 ŷidxi. Then

dyi = ∇xyi · dx = |∇xyi| dxi, and hence

dxi =
dyi

|∇xdyi| . (B.6)

Employing jointly equations (B.2), (B.5) and (B.6) we ob-
tain the following formula

J (y1, . . . , yd)
d∏

i=1

dyi = dy1

∏d
i=2 dxi

|∇xy1| , (B.7)

where the differential elements dx2, or dx2 dx3 = dS be-
long to a curve or a surface perpendicular to the vector
∇xy1.

Referring the present consideration to the orthogonal
momentum k-space, for which the curvilinear, orthogo-
nal transformation of the coordinate system is given, and
where the first coordinate represents the one-particle en-
ergy spectrum ξ, employing equation (B.7) one can state
that the following definitions of the density of states, for
d = 2 or 3

ν(ξ) =
2

(2π�)d

∫ ∏d
i=2 dki

|∇kξ| ,

ν(ξ) =
2

(2π�)d

∫
J (ξ, . . . , ξd)

d∏

i=2

dξi

are quite equivalent. Here ξ2, or ξ2 and ξ3 are the remain-
ing coordinates of the used curvilinear system. Note that
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the integration in the former expression is taken over one-
or two-dimensional surface for the fixed energy ξ, whereas
the integration in the latter expression is taken over finite
or infinite intervals of well-defined coordinates ξ2, or ξ2

and ξ3, respectively, which can be chosen in any manner.
To simplify the notation we define the kernel of the density
of states as

K(ξ, . . . , ξd) =
2

(2π�)d
J (ξ, . . . , ξd). (B.8)

Then

ν(ξ) =
∫

K(ξ, . . . , ξd)
d∏

i=2

dξi.

Appendix C: Symmetry properties of separable
parts of pairing interactions

The separated parts of pairing interactions (2) and (3)
have the following symmetry properties with regard to
elements of the group C4v:

1. the functions 1 and cos kx + cos ky are invariants and
they have the same properties as the function f1 of the
subset A;

2. the function coskx − cos ky is an invariant and it has
the same properties as function f2 of the subset B;

3. the functions sinkx and sin ky, have the same proper-
ties as functions f5 and f6, respectively, of the invariant
subset E1.

the corresponding functions of ϕ given in equations (31)
and (32) must possess the same symmetry properties. Let
us note that the function f(ϕ) defined by equation (28),
which is of the form

f(ϕ) =
| sinϕ| − | cosϕ|
| sinϕ| + | cosϕ| ,

when 0 ≤ ϕ < 2π, has the same properties as func-
tion f2 of the subset B. Hence, g X(ξ, ϕ) = X(ξ, ϕ) if
g ∈ {e, r2, a, b} and g X(ξ, ϕ) = Y (ξ, ϕ) if g ∈ {r, r3, c, d}
as well as g Y (ξ, ϕ) = Y (ξ, ϕ) if g ∈ {e, r2, a, b} and
g Y (ξ, ϕ) = X(ξ, ϕ) if g ∈ {r, r3, c, d}. This implies that

1′. the function [X(ξ, ϕ) + Y (ξ, ϕ)− 2]/2η is an invariant
and it has the same properties as function f1 of the
subset A,

2′. and the function [Y (ξ, ϕ)−X(ξ, ϕ)]/2η is an invariant
and it has the same properties as function f2 of the
subset B.

3′. Moreover, the functions (±) 1
2η

√
η2 − [X(ξ, ϕ) − 1]2

and (±) 1
2η

√
η2 − [Y (ξ, ϕ) − 1]2 have the same prop-

erties as functions f5 and f6 of the invariant subset
E1, respectively.

The obtained relations and the classification of the Fourier
harmonics performed in 6 evidence that the Fourier expan-
sions of the specified functions must have the following

forms

1
2η

[X(ξ, ϕ) + Y (ξ, ϕ) − 2]=
χ0(ξ, η)√

2
+

∞∑

l=1

χ4l(ξ, η) cos 4lϕ,

where

χ0(ξ, η) =
√

2
ηπ

∫ π/2

0

[X(ξ, ϕ) + Y (ξ, ϕ) − 2] dϕ

and

χ4l(ξ, η) =
2
ηπ

∫ π/2

0

[X(ξ, ϕ) + Y (ξ, ϕ) − 2] cos 4lϕ dϕ

for l = 1, 2, . . ., and

1
2η

[Y (ξ, ϕ) − X(ξ, ϕ)] =
∞∑

l=0

χ2+4l(ξ, η) cos(2 + 4l)ϕ,

where

χ2+4l(ξ, η) =
2
ηπ

∫ π/2

0

[Y (ξ, ϕ) − X(ξ, ϕ)] cos(2+4l)ϕdϕ,

and

(±)
√

2
2η

√
η2 − [X(ξ, ϕ) − 1]2 =

∞∑

l=0

χ1+4l(ξ, η) cos(1+4l)ϕ,

and

(±)
√

2
2η

√
η2 − [Y (ξ, ϕ) − 1]2 =

∞∑

l=0

χ1+4l(ξ, η) sin(1+4l)ϕ

where

χ1+4l(ξ, η)=
2
√

2
ηπ

∫ π/2

0

√
η2−[X(ξ, ϕ)−1]2 cos(1+4l)ϕdϕ

=
2
√

2
ηπ

∫ π/2

0

√
η2 − [Y (ξ, ϕ) − 1]2 sin(1 + 4l)ϕdϕ

for l = 0, 1, 2, . . ..
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